Feasibility of a Mobile Health App for Air Quality Forecasting to Support Asthma Self-Management: A Pilot Randomised Controlled Trial in Malaysia

Wei Leik NG¹, Adina ABDULLAH¹, Norita HUSSEIN¹, Chee Sun LIEW², Wee CHEAH³, Chun LIN⁴, Chng Saun FONG⁵, Ping Yein LEE⁶, Darwish Mohd ISA⁷, Afifah TAHAR³, Chin Hai TEO^{1,6}, Norimichi HIRAHARA⁶, Chee Kuan WONG⁸, Mohd Talib LATIF⁹, Maggie Chel Gee OOI¹⁰, Amy STIDWORTH¹¹, Daniel CONNOLLY¹¹, Poh Ying LIM¹², Jay EVANS⁴, Bee Kiau HO¹³, Hilary PINNOCK⁴, Ee Ming KHOO¹

- Department of Primary Care Medicine, Universiti Malaya, Malaysia 1.
- Department of Computer System & Technology, Universiti Malaya, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Malaysia
- NIHR Global Health Research Unit on Respiratory Health (RESPIRE), University of Edinburgh, United Kingdom
- 5. Institute for Advanced Studies, Universiti Malaya, Malaysia
- UM eHealth Unit, Faculty of Medicine, Universiti Malaya, Malaysia
- 7. Department of Social and Preventive Medicine, Universiti Malaya, Malaysia
- Department of Medicine, Universiti Malaya, Malaysia
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia
- 10. Center for Tropical Climate Change System, Universiti Kebangsaan Malaysia
- Cambridge Environmental Research Consultants, United Kingdom
- Department of Community Health, Universiti Putra Malaysia, Malaysia
- Botanik Health Clinic, Klang District, Ministry of Health, Malaysia

Background

- Outdoor air pollution, particularly haze, is common in Malaysia.
- Increased air pollutants \rightarrow higher risk of asthma exacerbation.

Methods

The intervention: AQA app

A mobile app to provide 48-hour air quality forecast data using the **Atmospheric** Dispersion **Modelling System** (ADMS) model

Aim of study:

Assess feasibility of the app and its impact on asthma control

Study design

Pilot RCT

RCT design

Parallel two-arm trial - 1:1 block randomization (block size 2)

Site

· Single centre; public primary care clinic in Malaysia

Sample

Adult patients with asthma; reported exacerbations with haze

Groups

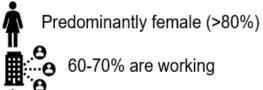
- Intervention: AQA app + usual care (n=30)
- Control: Usual care only (n=30)

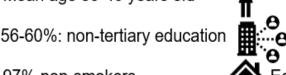
Assessments

- Asthma control (GINA tool) at baseline, 1, 3, 6, 12 months.
- Secondary: Exacerbations, emergency visits, medication use

Week 1

- Usability: System Usability Scale (SUS).
- · App utility: Dashboard analytics


Results at 1-month follow up (n=30 per arm)


Similar baseline characteristics for both arms (p>0.05)

Mean age 39-40 years old

97% non-smokers

Equal exposure to indoor air pollutants (e.g. mosquito coils, joss-sticks)

Challenges:

Technical issues: Auto log offs from app, forecast data interruptions Low utility issues → qualitative study to evaluate this at the end of trial

No significant difference in asthma control (p = 0.637). Mean SUS score: **70.1** → indicates good usability.

Utility reducing at 1-month follow-up

Frequency of using the app functions (air quality forecast and map)

—AQ Forecast —AQ Map

Week 3

Week 4

Week 2

Conclusion

App shows promise in usability.

Ensuring smooth data flow is key to optimal app performance.

Investigating the low utility issue may improve future app design.